

NEWS RELEASE

14 Si Veritas In Silico

January 5, 2026

Company Name: **Veritas In Silico Inc.**

Representative: Shingo NAKAMURA,

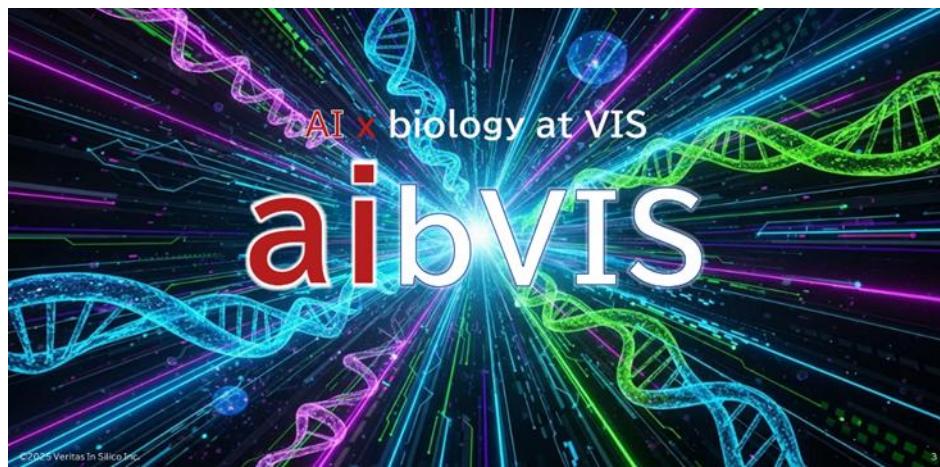
Representative Director and CEO

Listed on: TSE Growth

Stock Ticker Code: 130A

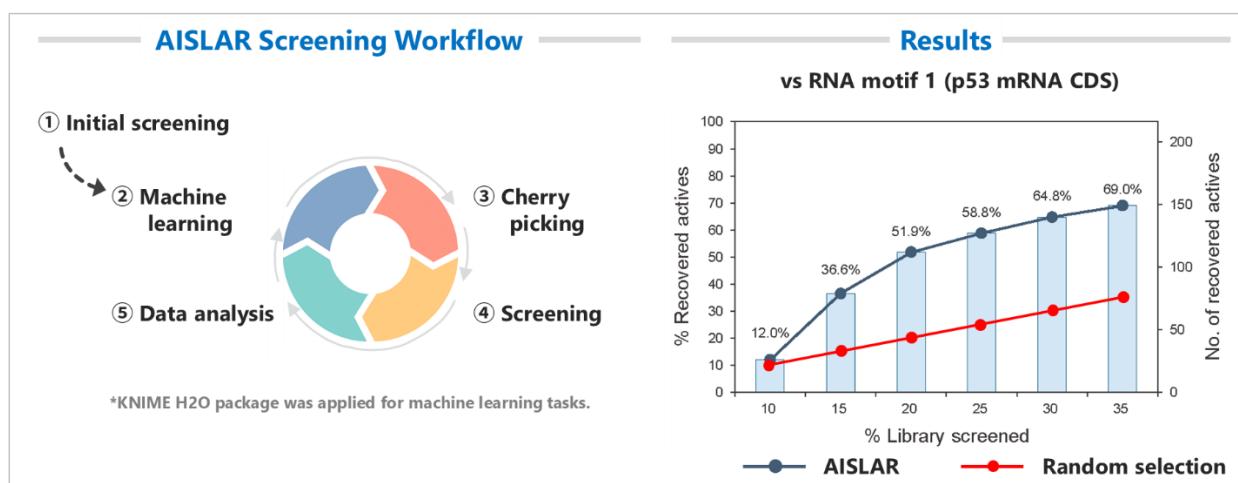
Contact Person: Tsuneo GODA,

Executive Officer, General Manager,


Corporate Planning Division

Email: ir@veritasinsilico.com

Upgrading the Drug Discovery Platform ibVIS® to aibVIS


Veritas In Silico Inc. (hereinafter referred to as "VIS") has advanced its core business of mRNA-targeted drug discovery research by leveraging ibVIS®, a comprehensive drug discovery platform that facilitates research into both small molecule drugs and nucleic acid drugs. VIS has obtained intellectual property rights through patenting in Japan, Europe and the United States for technologies of its proprietary drug discovery platform.

VIS has improved multiple "Rule-based AI ^{*1}" systems integrated into ibVIS®. Furthermore, based on extensive data accumulated through internal research and multiple drug discovery projects, VIS has developed and implemented "Data-driven AI ^{*2}." This has led to the construction and utilization of specialized AI systems designed to perform specific, expert-level tasks required at each stage of our drug discovery projects. Moving forward, we will continue along this path, continuously improving our drug discovery platform through specialized AI. The following section delineates how VIS employs AI.

The distinctive feature of the AI development approach at VIS lies in its use of multiple “Specialized AI ^{*3}” combined to address increasingly sophisticated drug discovery research. Similar to how drug discovery research has traditionally been advanced through collaborative efforts involving numerous experts, VIS aims to enhance the precision and reduce the duration of drug discovery research by integrating multiple specialized AI systems with distinct expertise. This approach stands apart from the recent global trend among major IT companies to develop and utilize a single “Artificial General Intelligence (AGI) ^{*4}” that surpasses human intelligence.

The numerous “Specialized AI” implemented by VIS in its drug discovery platform are AI systems designed and optimized for a specific purpose, or AI trained using data tailored to particular objectives. These specialized AI systems are characterized by extremely high performance in accomplishing their specific tasks and their compact size, while they cannot be applied to any other task. For VIS, which possesses vast amounts of specialized data accumulated through its drug discovery business, the compact nature of AI means reduced construction costs and the ability to build VIS-exclusive “specialized AI.” Furthermore, at VIS, experimental scientists and software developers work closely together; in some cases, the same person handles both roles. This enables the company to continuously identify various internal needs and incorporate them into AI in a highly agile manner.

An example of screening workflow and performance evaluation using Machine-learning with proprietary “Specialized Data-driven AI” AISLAR (AI-augmented Iterative Screening Libraries Against RNA targets) implemented in aibVIS

Using multiple specialized AIs to achieve a goal may resonate with the Japanese concept of “Yaorozu-no-Kami”—the belief that the world is shaped by myriad deities each fulfilling their own specific role. Based on the concept, VIS has evolved its drug discovery platform, ibVIS[®], into aibVIS by refining numerous “Specialized Rule-based AIs” and implementing “Specialized Data-driven AIs” utilizing internally accumulated data. This combines AI-driven drug discovery with biological research. VIS will continue to refine its platform, including by leveraging internally accumulated data, and will develop and implement new “Specialized AIs” as needed.

Through these efforts, VIS will further evolve its superior platform technology, enabling differentiation from competitors and maintaining its competitive edge.

(For Reference) Types of AI and Development Approach in VIS

	Types of AI	
	Rule-based AI : Deductive	Data-driven AI : Inductive
General-Purpose AI : Large-Scale	(VIS will not pursue due to conflicting mechanisms and policies)	Pursued by Major IT companies
Specialized AI : Small-Scale	VIS has been pursuing and will continue to improve	VIS has started pursuing and will expand in the future

● Comments from Tatsuya SASAKAWA, PhD., Executive Officer and General Manager of Research Strategy Division of VIS

Since its founding, VIS has leveraged Rule-based AI to pioneer mRNA-targeted small molecule drug discovery, opening pathways to treat diseases previously considered untreatable.

During the recent AI boom, Data-driven AIs were considered mainstream. To avoid any potential confusion, VIS opted not to use the term "AI" when referring to its own informatics technology. However, in recent years, there has been a notable increase in opportunities for interviews related to AI-driven drug discovery. CSO of VIS has been invited to give presentations at international conferences on AI-driven drug discovery and has begun publishing papers on AI. Furthermore, as our internal research deepens and collaborative drug discovery research progresses, we have accumulated a wealth of data unmatched anywhere in the world. This accumulation, coupled with our initiation of Data-driven AI development, has led us to now describe VIS's technology as "AI-driven drug discovery."

Moving forward, VIS will leverage its technological advantages while dedicating efforts to advancing our platform business and creating our proprietary pipeline.

● Glossary for Reference

*¹ **Rule-based AI**: Artificial Intelligence constructed according to established theories or rules, deriving outputs for given inputs. Its construction requires applicable theories or rules incorporating expert experience and knowledge, making it the only type of AI capable of being created for new fields where data is absent.

*² **Data-driven AI**: Artificial Intelligence constructed by training machine learning or deep learning models on vast amounts of data to derive outputs for given inputs. In recent years, significant progress has been achieved by training generative AI—which has become synonymous with AI—using massive computational resources to process large datasets, making it the current mainstream approach in AI.

*³ **Specialized AI** : Artificial Intelligence designed to solve specific tasks within particular functions such as speech recognition, Go/Shogi, and translation, delivering high performance only within that scope. It cannot handle tasks not intended in its design.

*⁴ **Artificial General Intelligence (AGI)** : Artificial Intelligence developed to perform a wide variety of intellectual tasks like humans and adapt flexibly to unfamiliar challenges. While not yet realized with current technology, research and development are actively underway.

For Further Information, Contact:

- Veritas In Silico Website Inquiry Form : <https://www.veritasinsilico.com/en/contact/>